Blog

Autor: Dr.-Ing. Benedikt Janny

Human Factors & Usability Engineering for Medical Products

With usability and user interface evaluations for user-centered medical devices

Since the introduction of the Medical Device Regulation (MDR), the examination of usability has become a focus for manufacturers of medical devices. At the heart of the so-called human factors or usability engineering process are user interface evaluations of medical products with medical professionals.

Medical progress and the innovative power of medical technology developers lead to an increasing number of interaction processes between people and technical, stationary, as well as ambulatory systems; from the perspective of the medical user as well as the treated patient. Here, the patient is usually not the user of the device, which is why medical devices typically have two interfaces to people. This interaction relationship represents the human-machine system, in which the system elements patient, doctor (or nurse), and machine are related to each other through interactions.

Usability-Engineering Schema zur medizintechnischen Mensch-Maschinen-Interaktion
Basic scheme of medical human-machine interaction

Due to the increasing use of innovative technical systems, new requirements arise from the user’s point of view in terms of safe, effective, efficient, and satisfactory operation of medical technology. The collection, implementation, and validation of these so-called usage requirements, alongside the design of user interfaces (User Interfaces) and their evaluation, are the focus of the “Usability Engineering Process”. In the development of medical devices, in addition to these components known from “User Centered Design,” the risk management of use-related risks (Use-related Risk Assessment) is an essential aspect.

Regulatory and standard requirements of the Usability Engineering Process

The establishment and implementation of a Usability Engineering Process and the documentation of all activities in a Human Factors or Usability Engineering File are part of the regulatory requirements for manufacturers of medical devices in the context of medical device approval. The normative references for usability engineering form, from a German perspective, DIN EN 62366-1:2021 and IEC/TR 62366-2:2016. The American Food and Drug Administration (FDA) raises additional regulatory requirements and presents them in its guideline document FDA-2011-D-0469 (Applying Human Factors and Usability Engineering to Medical Devices). Further requirements apply for China and the UK.

From the uss specification to user requirements engineering to use risk analysis

The specification of the application (Use Specification) represents the starting point of the Usability Engineering Process. This includes, among other things, the intended medical indication, the specification of user groups (User Profile), and the specification of all relevant usage environments. The specification of the application (Use Specification) already influences the later evaluation activities, for example, in the selection of representative test participants or test environments for the summative usability evaluation. The identification of user tasks and requirements in empirical studies of the usage context (User Research & Workflow Analyses) forms the bridge to the subsequent steps of use risk (Use-related Risk Assessment) and user requirements management (User Requirements Engineering). In the risk management process, use-related risks are analyzed and assessed based on task models. In the requirements management, the requirements necessary for the design of the human-machine interface (User Interfaces) are derived from the needs.

DID YOU KNOW?

„Risk and requirements management processes represent the collaborative processes of usability engineering. If a close interlocking is achieved here, many synergistic effects for the medical device development process can be achieved. Do you want to align your medical device development process user-centrically? Our experienced experts are happy to support you.“

User Interface Design

The subsequent phases of design and evaluation are based on risk and requirement considerations. In the User Interface Design phase, all human-product interfaces (User Interfaces) are specified within the User Interface Specification and designed using prototyping methods. Depending on the nature of the medical device to be developed, various prototyping methods can be used. For example, 3D printing and laser cutting methods are suitable. The assurance of usability (Usability) of the developed User Interface prototypes is done using targeted usability evaluation methods.

User Interface / Usability Evaluationen

Usability evaluations form the heart of the Usability Engineering Process and must be planned early on. Here, the scope, type, and timing of the evaluation methods must be adapted to the complexity of the medical device to be evaluated, not only to prove the regulatory obligation of safe and effective handling but also to enable the actual added value, the desired optimization of human-product interaction. Usability evaluation methods can be divided into inspection and user test methods.

Inspection methods are carried out by usability professionals and mostly involve checking compliance with heuristics or design guidelines. Here, experienced experts check the user interfaces of the medical device for conformity or deviation with existing and recognized guidelines. In the context of medical device development, thinking through operating procedures (Cognitive Walkthrough) is also used as an inspection method.

In contrast, the second group of methods, the user test methods, follows an empirical, user-based approach. For this purpose, it is necessary to simulate the usage context sufficiently in the usability lab and to carry out observations and interviews with users representative of the respective medical device. The gold standard test method is the Usability Test, an evaluation of usability with users based on simulated task scenarios (Test Cases), usually with participant observation.

Medizintechnischer Usability-Test
Observation and documentation of a medical usability test

In the Usability Engineering Process for medical devices, methods from both groups are described in the normative references. Since inspection methods involve less implementation effort, they are recommended for early phases when the user interface is not yet sufficiently concrete for a Usability Test. When which method is used must be determined in the User Interface Evaluation Plan at the beginning of the design activities. Crucial are the early planning and methodically correct implementation of the evaluations.

DID YOU KNOW?

„For usability tests, there are numerous methodological aspects that can be varied (e.g., remote-inhouse / synchronous-asynchronous), so that in principle ‘the standard usability test’ does not exist, but an individual test plan must be made depending on the specifics of the medical device to be tested. Are you facing the challenge of planning a medical usability test? Our experienced experts are happy to support you.“

If evaluations are carried out accompanying development, they are called formative evaluations. Here, the focus is on identifying optimization potentials of the human-medical product interaction and their design-technical reflection in the development process. The normative references recommend conducting several formative evaluations. Depending on the complexity, novelty, and risk profile of the user interface, two to three formative evaluations are advised.

At the end of the medical device development process, manufacturers are obliged to prove the safe and effective use of their medical device. This is done within the framework of summative usability validation or evaluation. The summative evaluation includes a normatively determined type of planning (Evaluation Plan) and documentation (Evaluation Report).

Conclusion

Medical Human Factors & Usability Engineering serves both to meet regulatory requirements and to identify market-differentiating optimization potentials. In this respect, the interlocking of usability evaluations with the application specification (Use Specification), risk management (Use-related Risk Assessment), and requirements management (User Requirements Engineering) is of the utmost importance and should be anchored interdisciplinary in the entire development team to maximize the benefits.

Do you need support in implementing your medical usability activities? Our USE-Ing. experts are ready for you.

Standards & References

User-Centered Development of Hand-Operated Tools and Equipment

User-Centered design of handheld tools

Understanding and properly applying the principles of technical ergonomics and usability

The market for hand-operated tools, from electric leaf blowers to vacuum-mop devices to hand drills, is highly competitive. While German-speaking manufacturers could defend market shares through technical performance a decade ago, international competitors are increasingly catching up in this regard. One of the most promising market differentiation potentials for the future is the user-centered development and design of work tools.

The design of human-tool interfaces, such as handles, operating and display elements, and innovative interaction concepts in the form of gesture and voice controls, are the focus and crucially determine comfortable and intuitive handling. However, for this product class, it is also essential to ensure safe handling for users even in the most extreme working conditions, such as dirt, temperature, or moisture. Manufacturers face the fundamental challenge of systematically identifying user needs from the start, translating these into technically specifiable usage requirements (User Requirements), prototyping them in the form of suitable human-machine interfaces, and ultimately evaluating them with real and representative end-users. These basic steps of user-centered product development should be iterated as quickly as possible according to DIN EN ISO 9241-210. The targeted integration of these sub-processes into the overall technical product development process is also demanding. The basis of user-centered work tool technology is provided by technical ergonomics, the approaches of usability (Engl. Usability), and suitable methods of interface prototyping.

Bedienung einer Bohrmaschine

Ergonomic fundamentals of work tool design

According to Schmidtke, “ergonomics is a scientific discipline whose object is the study of human interaction with technical systems”. This also implies the design and development of methods necessary for this research. Technical ergonomics, as further divided by Maier and Schmid, can be divided into macro and micro ergonomics. Macro ergonomics is based on a spatial ergonomics and height grid corresponding to body sizes, defining areas of visual and grasping spaces. Micro ergonomic content concerns the shape, color, graphic, and material design of control elements and graphical user interfaces. The ergonomic design of human-work tool interfaces is based on user-centered measures of anthropometry and the doctrine of comfort angles.

Anthropometric measurement conception

According to Schmidtke, anthropometry is the sub-discipline of anthropology that measures and statistically processes body measurements and proportions, as well as gender-, age-, region-, and socio-specific differences, and interprets them application-oriented if necessary. [2] Percentiles are mostly used for anthropometric data. This information indicates the percentage of the population group studied that falls below or exceeds a certain measurement. The 50th percentile corresponds to the median. For ergonomic designs of human-machine interfaces of hand-operated tools, besides the 50th percentile of the relevant body measure, usually the 5th percentile (female) and the 95th percentile (male) are used. It can be assumed that all users whose body measurements fall between these boundary percentiles can use the resulting product ergonomically satisfactorily.

Comfort angle doctrine

Comfort can be defined as subjectively experienced well-being in a given environment or simply through the absence of discomfort. The measure of comfort or discomfort is especially relevant in the user-centered design of hand-operated tools concerning body posture and the position of body parts or joints during operation. [2] From this, the definition of comfort angles as the angles between body parts that are subjectively perceived as pleasant arises.

Failure to maintain comfort angles results in forced postures in the form of unphysiological body postures forced by working conditions. These lead to fatigue and muscle pain after a longer duration due to static holding work. In addition, the perceived level of strain increases, which is the result of psychophysiological reactions of humans to external stresses.

For the design of an ergonomic gripping and operating posture of hand-held devices, the joint chain from the clavicle joint through the shoulder joint and elbow joint to the wrist joint is particularly relevant. In addition to the maximum movement angles, the comfort areas for the upper body and the hand-arm system are important features for a user-friendly design of hand-held products.

Veranschaulichung der Greif- und Bedienhaltung anhand eines Laubbläsers hinsichtlich der Menschzentrierten Entwicklung

Rapid prototyping of physical human-machine interfaces of hand-operated devices

Once the human-machine interfaces have been analyzed and conceptualized using ergonomic methods, the next step is to realize them in prototype form to make the handling and operation tangible for users. Depending on the type of interface to be designed (Engl. Interface), different methods are effective. For example, modular or plug-in systems are suitable for manipulation elements such as guide handles to estimate the basic grip and grasping surface layout. For controls and detailing of handles, plastiline or clay can be used to approximate a suitable shape. To enable test users to experience a product close to series production in the early phases of product development, the use of 3D printing techniques becomes sensible. Once this state is reached, it is necessary to evaluate the usability of the prototype.

Skizze und Prototyp eines Handgriffs in der Bedienung

Fundamentals of usability evaluation

According to the DIN EN ISO 9241 standard series, usability (Engl. Usability) is the extent to which a product can be used by specific users in a specific usage context to achieve specific goals effectively, efficiently, and satisfactorily. Thus, effectiveness, efficiency, and user satisfaction are quantifiable metrics of usability that can be collected during the operation of the tool, i.e., during interaction with it. Evaluation methods are available for collecting these measurement parameters.

Usability evaluation methods can be divided into inspection and test methods according to Nielsen. Inspection methods are conducted by usability professionals and mostly involve checking compliance with heuristics or design guidelines. Here, an experienced usability expert analyzes the human-work tool interface of the technical product for conformity or deviation from existing and recognized guidelines. For hand-operated tools, this usually includes geometric specifications such as grip diameter or grip materials, as well as application-appropriate grip orientations and courses. In addition, the societal compatibilities recognized in the respective cultural circle and the affordance, the so-called offer character, of the design must be checked. For example, in the Western cultural circle, the green design of a control element is usually associated with the start of a process, while a red color marks the end of a process. The same applies to widespread symbols and icons, which should be considered accordingly in the design.

In contrast to these analytical methods, the second group of methods, the test methods, involves an empirical approach. It is necessary to enter the usage context and conduct observations and interviews with real users. The gold standard test method is the Usability Test, an evaluation of usability with users based on defined task processing, usually through participant observation.

Reale Nutzer bedienen die Geräte in realer Nutzungsumgebung

Do you want to develop future-oriented and innovative work tools and devices and are looking for a reliable partner? Our experts in user-centered technology development and design are ready to assist you in this challenge.

STANDARDS / REFERENCES

Success with Personas

The persona - a representation of a fictional, typical user for a product

They are based on the actual, current, or future user group, but do not depict a real existing person. The fictional but realistic persona helps developers to view their product from the user’s perspective and to identify with it. Therefore, personas aid in understanding the needs of the represented users and in generating solutions for the user’s interaction with the product.

Foundation of the persona

The persona is based on solid user research and requires a good understanding of the users. It should first be clarified who the current or future users are and what characterizes them. Various methods from the field of User Research can be used for this purpose, such as focus groups or contextual inquiry.

This subject area corresponds to the Empathize phase of the five-stage Design Thinking process, in which an understanding for the users is developed.

In the five-stage Design Thinking process, which consists of the phases Empathize, Define, Ideate, Prototype, and Test, the persona can be categorized into the “Define” phase. In the Define phase, the results of the Empathize phase are summarized, and user-oriented problems are analyzed and defined. The persona provides a way to summarize and represent these results so that they can be communicated well to all involved in the product development process.

In the usability engineering process in medical technology, the persona, alongside the purpose specification and the usage context, can be part of the Use Specification.

Usually, several personas are created to represent the diversity of users. The sensible number of personas depends on the heterogeneity of the users.

TIP:

„It is often useful to transfer not only the typical, most frequently represented users but also atypical users into personas. If the product is also to be usable for the atypical persona, both extremes and thus the spectrum between them can be considered in the development. For example, alongside a healthy persona, a persona with severe sensory limitations or a persona without expertise and a persona with above-average expertise can be developed.”

Many products have several user groups, such as in medical technology where doctors and surgical nursing staff often work with the same product in different ways. If there are different user groups, they should each be represented by one or more personas.

Structure of a Persona

Personas contain demographic data, including name, age, gender, and place of residence. The persona’s social environment is also of great relevance. For example, it can be stated whether time is spent with friends and what the marital status is. Another aspect is the values, attitudes, and goals in life.

Typically, the persona is accompanied by an image to give it a literal face.

Details about the professional background and education are also part of the persona. In addition to the profession, leisure activities are relevant, so that the observers, i.e., those involved in the project, can imagine a typical day of the persona.

Further questions to be answered by the persona are: Does the persona have sensory or motor limitations? Does she have illnesses or is she particularly fit?

TIP:

„Even very detailed information, such as wearing glasses, can be helpful later in the design process.”

Additional product-specific details, such as special prior knowledge and previous experience with the product or similar products, can be valuable information and are therefore useful components of a persona. Which additional aspects are integrated and how priorities are set in designing the persona depends heavily on the product. Overall, the persona should present a coherent overall picture.

Working with Personas

Personas serve as a communication tool between all project participants. They can standardize the understanding of users in the project team and define properties of the users to be considered.

Based on the personas, usage scenarios can be created in the further process, which depict the persona using the product to be developed.

Viewing the product from the perspectives of the personas, and thus the users, is useful, for example, in generating problem solutions or developing ideas for new features. Personas are also suitable for uncovering and understanding specific pain points or critical usage situations.

Additionally, personas can be used to assist in decision-making or prioritization of ideas in the development process.

If new insights about the user group or the product emerge over time, the persona should be reviewed for its currency and possibly adjusted.

CONTRIBUTIONS IN THIS TOPIC FIELD